Abstract

Evaluating the impact of climate change factors, especially temperature and carbon dioxide (CO2), on rice yield is essential to ensure future food security. Because of the wide biogeographical distribution of rice, such evaluations are conducted exclusively through modeling efforts. However, geographical forecasts could, potentially, be improved by the inclusion of field-based data on projected increases in temperature and CO2 concentration from a given rice-growing region. In this study, the latest version of the ORYZA (v3) crop model was evaluated with additional yield data obtained from a temperature-controlled free-air CO2 enrichment system (T-FACE) in Southeastern China. ORYZA (v3) results were then evaluated in the context of phase five of the Coupled Model Intercomparison Project (CMIP5) for representative concentration pathways (RCP) 4.5 and RCP 8.5 using five global change models (GCMs). Our findings indicate that climate change, i.e., inclusion of CO2 and temperature effects, decreased mean rice yield by 3.5%, and 9.4% for RCP 4.5; and by 10.5 and 47.9% for RCP 8.5 for the scenarios in the 2050s and 2080s, respectively. The CO2 fertilizer effect partially compensated but did not offset the negative impacts of rising temperature on rice yields. Warmer temperatures were the primary factor that influenced yield by adversely affecting the spikelet fertility factor and spikelet number. Overall, climate change would have positive effects on rice yields until the middle-century in Southeastern China but negative effects were noted by the end of the century. These results may be of interest for informing policy makers and developing appropriate strategies to improve future rice productivity for this region of China.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.