Abstract

PurposePatients with acquired monocular vision (AMV) lose vision in the temporal crescent on the side of the blind eye. This visual field loss affects patients’ ability to detect potential hazards in the blind field. Mounting a base-in multiplexing prism (MxP) on the nasal side of the seeing eye can provide true field expansion and enable detection of potential collision hazards. We evaluated the efficacy of the MxP glasses in a virtual reality walking environment.MethodsA three-dimensional printed clip-on MxP holder that can be adjusted for an individual user's facial parameters was developed. Virtual reality walking scenarios were designed to evaluate the effect of MxP field expansion on the detection of a pedestrian approaching from different initial bearing angles and courses. The pedestrian detection rates and response times of 10 participants with simulated AMV (normally sighted participants with one eye patched) and three patients with AMV were measured.ResultsThe MxP provided true field expansion of about 25°. Participants performed significantly better with the MxP than without the MxP in the pedestrian detection task on their blind field, while their seeing field performance was not significantly different.ConclusionsThe MxP glasses for patients with AMV improved the detection of potential collision hazards in the blind field.Translational RelevanceThe MxP with an adjustable clip-on holder may help patients with AMV to decrease the risk of collision with other pedestrians.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.