Abstract

To review pasture species for regions with 465–680 mm average annual rainfall, 22 perennial grasses and herbs were evaluated for pasture establishment and productivity in four states at seven locations where the arrest of groundwater recharge is considered necessary to ameliorate dryland salinity. Species represented introduced and native, temperate and subtropical grasses, chicory (Cichorium intybus L.) and plantain (Plantago lanceolata L.). This report describes establishment and yield; the following paper describes persistence and root characteristics. Yields were measured over 2–3 years except at one site, which suffered severe drought. Perennial ryegrass (Lolium perenne L., cv. Avalon) and tall fescue (Festuca arundinacea Schreb. = syn. Lolium arundinaceum. (Schreb.) Darbysh., cvv. AU Triumph and Resolute MaxP), cocksfoot (Dactylis glomerata L., cv. Porto) and phalaris (Phalaris aquatica L., cv. Holdfast and Australian) were the most productive species, with dry matter (DM) yields of 13.6–15.1 t/ha. For summer growth, Porto and Rhodes grass (Chloris gayana Kunth, cv. Katambora) were the most productive species; relative to Australian in summer, Porto and Katambora produced 41% and 26% more DM, respectively (95% confidence). Perennial ryegrass (cv. Avalon), tall fescue (cv. Resolute MaxP) and chicory (cv. Grouse) were particularly valuable for autumn growth; Avalon was 30% more productive than Australian. Tall fescue (cv. Resolute MaxP) was 32% more productive than Australian in winter. Avalon and AU Triumph were the most productive grasses and herbs in spring. Based on natural rainfall over the 2–3 years of measurement, the mean water use productivity, ignoring any runoff, was 10.5 kg DM/ha.mm for the three most productive species. Apart from kangaroo grass (Themeda triandra Forssk), native grasses gradually established, but over a prolonged period weeping grass (Microlaena stipoides (Labill.) R.Br., cv. Wakefield) was the most rapid. Perennial ryegrass, tall fescue, cocksfoot and phalaris maintained productive yields across a diverse range of soils and climates. Exploration of the diversity within these species in a nationally coordinated program of genetic improvement appears warranted for improving reliability and expanding the zone of adaptation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.