Abstract
Tightly confined light enables a variety of applications ranging from nonlinear light management to atomic manipulation. Photonic-crystal fibres (PCFs) can provide strong guidance in very small cores while simultaneously offering long interaction lengths1. However, light confinement in waveguides is usually ultimately limited by diffraction2,3, which tends to spread light away from the waveguiding core, despite its higher refractive index. It was recently demonstrated that such spreading fields can be trapped by a nanometre-scale slot inside a strongly guiding silicon-on-insulator (SOI) waveguide4,5. In this letter we demonstrate the concentration of optical energy within a subwavelength-scale air hole running down the length of a PCF core. The core resembles a submicrometre-diameter tube with a bore diameter of 200 nm or less. The high intensity in an air hole, coupled with long interaction lengths, promises a new class of experiments in light–matter interaction and nonlinear fibre optics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.