Abstract
A peak of the detected fluorescence rate per molecule has recently been observed in experiments of fluorescence correlation spectroscopy carried out on subwavelength apertures in metallic screens, a phenomenon that appears at a diameter-to-wavelength ratio below the fundamental mode cutoff. Although the origin of the resonant transmission through a subwavelength aperture has been well explained in terms of excitation of plasmon surface modes on the aperture ridge, the origin of the maximum that occurs at a radius-to-wavelength ratio smaller than 1/4 was not clear. Using a rigorous electromagnetic theory of light diffraction in cylindrical geometry, we show that it is linked to the appearance of the fundamental mode propagating inside the aperture. We obtain good agreement between the theoretical and the experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.