Abstract

A novel three-dimensional epitaxial technique allows on patterned substrates the realization of gallium nitride pillars, also known as nano- and microrods. The typical dimensions of the microrods are in the range of one micron for the radius of the hexagonal footprint and about 10 μm in height. The microrods consist of a semiconductor heterostructure with an n GaN core, a n-GaN shell, a p GaN shell and an intermediate quantum well layer. The field emission properties were investigated in diode configuration by integral field emission measurements in a vacuum chamber at pressures around 10−9 mbar. The spacer was mica with a thickness of 50 μm. A metallized fine-meshed nitride grid (or a metallized Si-grid) was used as anode. A current of about 1 μA at a voltage of 1250 V (1750 V) was measured. An onset field of about 12.5 MV/m (20 MV/m) and field enhancement factors in the range of 200 to 500 (150 to 300) were found. The investigation with the fine-meshed grid showed an expected pronounced saturation region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.