Abstract

The low efficiency and instability of electron emission from two-dimensional (2D) materials such as WS2 and NiS hamper application to vacuum microelectronic devices. Although nickel-based alloys have many favorable physicochemical properties suitable for nanoelectronics, electron field emission (FE) from heterostructures comprising tungsten-nickel sulfide alloys and graphite carbon (WNi–S/C) has been seldom studied because it is difficult to fabricate the nanostructures in situ. In this work, field emitters composed of the WNi–S/C nanobelt composite are produced on Si microchannel plates (WNi–S/C@Si) hydrothermally. The structure has a porous and vertically aligned 3D morphology in addition to excellent adhesion strength with the substrate. Geometrical modulation of the WNi–S/C@Si is performed by changing the hydrothermal reaction temperature and an ultralow turn-on electric field of 0.51 V μm−1 for a current density 0.1 mA cm−2, threshold electric field of 0.65 V μm−1 for a current density of 1 mA cm−2, and stability of 97.1% for 8 h are accomplished. The related mechanisms are investigated and discussed. Moreover, finite element simulation shows that not only the shape of the nanostructures but also the high aspect plays a key role in reducing screen effects. These outstanding properties suggest large potential in high-performance FE and vacuum nanodevices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call