Abstract

For the fabrication of field emitter cathodes with metallic nanocones, an in situ fabrication technique based on electrodeposition in an ion track etched polymer template was used. Three samples with nanocones made of gold and different cone densities were deposited on a circular electrode with a diameter of 2.5 mm, using templates with pore density of 6 × 104, 4 × 105, and 1 × 106 cones/cm2. The cones had a height of 24 μm, a base diameter between 3 and 3.75 μm, and a tip diameter below 500 nm. Integral field emission measurements revealed onset fields of down to 3.1 V/μm and average field enhancement factors of up to 1240. For one sample, the maximum emission current from the cathode reached 142.2 μA at an applied voltage of 338 V between cathode and extraction grid, which had a distance of 50 μm. To investigate the stability of the field emission current, cumulative long-term measurements were performed for over 50 h. A stable emission current of (31.0 ± 1.3) μA at an average applied voltage of 290 V (E = 5.8 V/μm) was observed. For currents above 100 μA, a decrease of the current and therefore a degradation of the emitter structures occurred.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call