Abstract

Nanocrystalline diamond (NCD) films were produced by microwave plasma-enhanced chemical vapor deposition (MPECVD) using gas mixtures of Ar, H2, and CH4. The structural properties, electron emission, and electric discharge behaviors of the NCD films varied with H2 flow rates during MPECVD. The turn-on field for electron emission at a pressure of 2.66 × 10−4 Pa increased from 4.2 V μm−1 for the NCD films that were deposited using a H2 flow rate of 10 cm3 min−1 to 7 V μm−1 for films deposited at a H2 flow rate of 20 cm3 min−1. The NCD film with a low turn-on field also induced low breakdown voltages in N2. The grain size and roughness of the NCD films may influence both the electron emission and the electric discharge behaviors of the NCD cathodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.