Abstract

Microbial redox activity offers a potentially transformative approach to the low-temperature synthesis of nanostructured inorganic materials. Diverse strains of the dissimilatory metal-reducing bacteria Shewanella are known to produce photoactive filamentous arsenic sulfide nanomaterials by reducing arsenate and thiosulfate in anaerobic culture conditions. Here we report in situ microscopic observations and measure the thermally activated (79kJmol−1) precipitation kinetics of high yield (504mg per liter of culture, 82% of theoretical maximum) extracellular As2S3 nanofibers produced by Shewanella sp. strain ANA-3, and demonstrate their potential in functional devices by constructing field effect transistors (FETs) based on individual nanofibers. The use of strain ANA-3, which possesses both respiratory and detoxification arsenic reductases, resulted in significantly faster nanofiber synthesis than other strains previously tested, mutants of ANA-3 deficient in arsenic reduction, and when compared to abiotic arsenic sulfide precipitation from As(III) and S2−. Detailed characterization by electron microscopy, energy-dispersive X-ray spectroscopy, electron probe microanalysis and Tauc analysis of UV-vis spectrophotometry showed the biogenic precipitate to consist primarily of amorphous As2S3 nanofibers with an indirect optical band gap of 2.37eV. X-ray diffraction also revealed the presence of crystalline As8S9-x minerals that, until recently, were thought to form only at higher temperatures and under hydrothermal conditions. The nanoscale FETs enabled a detailed characterization of the charge mobility (∼10−5cm2V−1s−1) and gating behavior of the heterogeneously doped nanofibers. These studies indicate that the biotransformation of metalloids and chalcogens by bacteria enables fast, efficient, sustainable synthesis of technologically relevant chalcogenides for potential electronic and optoelectronic applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.