Abstract

The Ebola virus transmits a highly contagious, frequently fatal human disease for which there is no specific antiviral treatment. Therefore, rapid, accurate, and early diagnosis of Ebola virus disease (EVD) is critical to public health containment efforts, particularly in developing countries where resources are few and EVD is endemic. We have developed a reduced graphene oxide-based field-effect transistor method for real-time detection of the Ebola virus antigen. This method uses the attractive semiconductor characteristics of graphene-based material, and instantaneously yields highly sensitive and specific detection of Ebola glycoprotein. The feasibility of this method for clinical application in point-of-care technology is evaluated using Ebola glycoprotein suspended in diluted PBS buffer, human serum, and plasma. These results demonstrate the successful fabrication of a promising field-effect transistor biosensor for EVD diagnosis.

Highlights

  • The 2014–2015 outbreak of Ebola virus disease (EVD) in West Africa resulted in thousands of deaths and generated worldwide panic

  • We report the development of an Field-effect transistor (FET) biosensor in which reduced graphene oxide (rGO) instead of MoS2 or black phosphorous (BP) is used as the conducting channel, considering the cost and stability of rGO for the practical application. rGO-based FET devices can be obtained by thermal annealing of graphene oxide (GO) sheets that are chemically adsorbed on the electrode, with extra advantages of low-cost and experimental flexibility, compared with graphene synthesized by the chemical vapor deposition (CVD) method

  • The channel has immobilized anti-Ebola probes that selectively capture the antigen. We found that such an FET biosensor has high selectivity and sensitivity towards the Ebola glycoprotein (EGP) of the Zaire strain, with a limit of detection down to 1 ng/ml

Read more

Summary

Introduction

The 2014–2015 outbreak of Ebola virus disease (EVD) in West Africa resulted in thousands of deaths and generated worldwide panic. We found that such an FET biosensor has high selectivity and sensitivity towards the Ebola glycoprotein (EGP) of the Zaire strain, with a limit of detection down to 1 ng/ml. To investigate sensor performance under a more complicated but practical condition, we used 0.01 × human serum/plasma obtained from the Blood Center of Wisconsin to suspend EGP as a way to simulate blood samples from Ebola patients.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.