Abstract

Because chemical reactions are largely governed by the movement of electrons, it is possible to control chemical reactions using electronic devices that provide functionality by controlling the movement of electrons in a solid. In this perspective, we discuss the concept of ‘field-effect surface chemistry,’ which controls chemical reactions on two-dimensional materials using field-effect transistors (FETs), a representative electronic device. The electrical voltages to be applied for the FET operation are the gate voltage and drain voltage. The former is expected to control the Fermi level and exert the effect of the electric field directly on the reactants, while the latter is expected to provide local heating by Joule heat and energy transfer to the reactants. Further, we discuss a sample structure that does not require any voltage but has the same effect as the gate voltage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call