Abstract

Black silicon (b-Si) surfaces typically have a high density of extreme nanofeatures and a significantly large surface area. This makes high-quality surface passivation even more critical for devices such as solar cells with b-Si surfaces. It has been hypothesized that conformal dielectrics with a high fixed charge density ( <b xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Q</b> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><b>f</b></sub> ) are preferred as the nanoscale features of b-Si result in a significant enhancement of field-effect passivation. This article uses 1-D, 2-D, and 3-D numerical simulations to study surface passivation of b-Si, where we particularly focus on the charge carrier control by | <b xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Q</b> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><b>f</b></sub> | up to 1 × 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">13</sup> cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-2</sup> under accumulation conditions. We will show that there is a significant space charge region compression in b-Si nanofeatures, which affects the charge carrier population control for moderate | <b xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Q</b> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><b>f</b></sub> | up to ≈1 × 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">12</sup> cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-2</sup> . The average surface minority charge carrier density can be reduced by 70% in some cases, resulting in an equivalent reduction in area-normalized surface recombination losses if the effective surface recombination velocity ( <b xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">S</b> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">eff</sub> ) is limited by minority carriers. This provides a possible solution for the empirical <b xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">S</b> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">eff</sub> ∝ 1/ <b xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Q</b> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><b>f</b></sub> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sup> reported previously. We will also show that the situation is more complicated for surface passivation films where the ratio between the electron and hole capture cross section (σ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><b>n</b></sub> / σ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><b>p</b></sub> ) is higher than 10 for p-type surfaces. For commonly used surface passivation films with a | <b xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Q</b> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><b>f</b></sub> | larger than ≈1 × 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">12</sup> cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-2</sup> , there is little space charge compression for b-Si. Consequently, <b xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">S</b> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">eff</sub> simply scales with the surface area, i.e., there is no enhanced reduction of surface recombination by field-effect passivation on b-Si.

Highlights

  • L IGHT trapping and surface passivation are two important aspects of surface engineering for high-efficiency solar cells

  • We will discuss the main findings from our earlier work about the charge carrier population control resulting from space charge compression in 1-D, which is relevant for understanding the results in 2-D and 3-D

  • The characteristics of field-effect passivation on undiffused Black silicon (b-Si) surfaces under accumulation conditions have been investigated through 1-D/2-D/3-D wafer modeling using Sentaurus TCAD

Read more

Summary

Introduction

L IGHT trapping and surface passivation are two important aspects of surface engineering for high-efficiency solar cells. Black silicon (b-Si) is a textured surface with nanoscale high-aspect-ratio features. These nanofeatures contribute to the advanced light trapping, which can potentially realize highefficiency b-Si solar cells with near-zero reflectance [1], [2]. The surface area of b-Si is significantly larger than. Manuscript received March 2, 2021; revised March 17, 2021; accepted March 20, 2021. Date of publication April 19, 2021; date of current version June 21, 2021.

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call