Abstract

An energy-tunable monoenergetic positron beam was used to study positron diffusion in the space-charge region of an Au/GaAs(SI) (semi-insulating) Schottky contact, where the electric field reaches \ensuremath{\sim}${10}^{5}$ V ${\mathrm{cm}}^{\mathrm{\ensuremath{-}}1}$ by reverse biasing the diode. An analytical solution of the time-dependent positron drift-diffusion model under an electric field was obtained for the case of a semi-infinite body with a capturing boundary, and explains the experimental results well. A positron diffusion coefficient of 1.8\ifmmode\pm\else\textpm\fi{}0.2 ${\mathrm{cm}}^{2}$ ${\mathrm{s}}^{\mathrm{\ensuremath{-}}1}$, and a positron mobility of 70\ifmmode\pm\else\textpm\fi{}10 ${\mathrm{cm}}^{2}$ ${\mathrm{V}}^{\mathrm{\ensuremath{-}}1}$ ${\mathrm{s}}^{\mathrm{\ensuremath{-}}1}$ in GaAs(SI) at 300 K, were obtained independently. This result is consistent with the Einstein relation. The dependence of the positron current density at the Au/GaAs interface on the electric field shows that GaAs(SI) is a possible candidate for the fabrication of the field-assisted positron moderator. \textcopyright{} 1996 The American Physical Society.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call