Abstract

The field-effect mobility characteristics of a non-degenerate ensemble of a two dimensional electron gas for interaction with acoustic mode lattice vibrations in the Si-SiO2 MOS structure at the high surface electric fields are calculated here for the low and high temperature cases. The calculation takes due account of some features which are usually neglected. These include the effects of (i) the transverse component of the phonon wave vector, (ii) the realistic model of the infinite triangular potential well along the transverse direction, while applying the momentum conservation approximation, and (iii) the full form of the phonon distribution function at low temperatures. The results seem to be interesting in that they are significantly different from what follows from other theories that neglect the effects of the above features. Moreover, the agreement between the results which are obtained here with the experimental data seems to be significantly better. The scope for further refinement of the present theory has been discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.