Abstract

A popular pre-harvest strategy to mitigate aflatoxin contamination of corn involves field application of non-aflatoxigenic strains of Aspergillus flavus. The basis of this biological control may involve multiple factors, but competitive displacement of aflatoxigenic strains by the biocontrol strains is a likely mechanism. Three biocontrol strains (NRRL 21882, 18543, and 30797) were applied annually, over a 4-year period, to the same 3.2-ha commercial corn field in the Mississippi Delta, where we monitored their post-release establishment, spread, and persistence. Within 2 months of the first biocontrol application, the percentage of soil-inhabiting aflatoxigenic A. flavus strains in some plots was reduced from 48 to 9% of the population. The frequency of aflatoxigenic A. flavus strains was also significantly reduced in the rest of field. After 4 years, neighboring plots that had never received a biocontrol treatment, and distanced from our treatment plots by at least 20 meters, had less than 20% aflatoxigenic isolates. This significant halo effect might be attributed to movement of soil through tillage operations, but the aflatoxigenicity shift could be detected in the untreated plots within 2 months of the initial applications, at a time when there was no tillage. The A. flavus populations that colonized the grain were also monitored and found to be less than 15% toxigenic in the fourth year for all treatments. Over all treatments and years, less than 2 ppb of aflatoxin was detected, which could be a consequence of the field-wide shift of the inherent A. flavus population to predominately non-aflatoxigenic strains. This study supports the efficacy of using non-aflatoxigenic A. flavus strains as pre-harvest biocontrol, and shows that most of its effectiveness occurs with the first application.

Highlights

  • Aspergillus flavus is a common soil saprophyte and an opportunistic plant pathogen

  • Several mycotoxins can be produced by A. flavus including aflatoxin (AF) and cyclopiazonic acid (CPA)

  • We describe here an experiment involving 4 years of annual biocontrol applications, in a highly productive corn monoculture, to monitor A. flavus populations in the soil and in host kernel tissue

Read more

Summary

Introduction

Aspergillus flavus is a common soil saprophyte and an opportunistic plant pathogen. Many agriculturally important crops can be infected by A. flavus. The resulting infections rarely cause appreciable yield loss, but can be important due to the resulting contamination by A. flavus mycotoxins. Several mycotoxins can be produced by A. flavus including aflatoxin (AF) and cyclopiazonic acid (CPA). Aflatoxin AF, a Group 1 carcinogen (IARC, 1993), is produced in several forms by various fungal species, and aflatoxin B1 is considered an especially potent liver carcinogen. Aflatoxin contamination of food and feed is especially problematic in parts of the world where the lack of testing and proper storage conditions lead to periodic

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.