Abstract

To determine the validity of field-derived mean maximum power (MMP) values for monitoring maximal cycling endurance performance. Twenty-seven male professional cyclists performed 3 timed trials (TTs) of 1-, 5-, and 20-minute duration that were used as the gold standard reference. Field-based power output data (3336 files; 124 [25] per cyclist) were registered during the preparatory (60d pre-TT, including training data only) and specific period of the season (60d post-TT, including both training and competitions). Comparisons were made between TT performance (mean power output) and MMP values obtained for efforts of the same duration as TT (MMP of 1-, 5-, and 20-min duration). The authors also compared TT- and MMP-derived values of critical power (CP) and anaerobic work capacity. A large correlation (P < .001, r > .65) was found between MMP and TT performance regardless of the effort duration or season period. However, considerable differences (P < .05, standard error of measurement [SEM] > 5%) were found between MMP and TT values for all effort durations in the preparatory period, as well as for the derived CP and anaerobic work capacity. Significant differences were also found between MMP and TT of 1 minute in the specific period, as well as for anaerobic work capacity, yet with no differences for MMP of 5- and 20-minute duration or the derived CP (P > .05, SEM < 5%). MMP values (for efforts ≥5min) and the associated CP obtained from both training sessions and competitions can be considered overall accurate indicators of the cyclist's maximal capabilities, but specific tests might be necessary for shorter efforts or when considering training sessions only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.