Abstract
Vegetation plays an important role in influencing the air/surface exchange of semivolatile organic compounds (SOCs). In order to predict the capability of different plant species to capture chemicals from the air, plant–air partition coefficients and kinetic accumulation parameters must be defined. In this study, potted plants of three different species were transferred to the vicinity of a source point for DDT, namely a contaminated area around a former production plant in Italy. Leaves were constantly sampled in order to follow the uptake from air over time. Later, the potted plants were transported to a location characterized by background diffuse air concentrations for the release phase. Coupling the experimental results with a two-compartment accumulation model it was possible to derive the kinetics parameters and the plant–air partition coefficient KPA for p,p′-DDT. The logKPA (on a mass/volume basis) ranged between 1.7 and 2.2 for the different species. The uncertainties related to the different phenomena involved in a field uptake/release experiment are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.