Abstract

BackgroundSurveillance of mosquito infection status is critical for planning and deployment of proper mosquito control initiatives. Point-of-care (POC) detection assays are necessary for monitoring the infection prevalence and geographical range of viruses in mosquito vector populations. We therefore assessed the novel real-time PCR (qPCR) bCUBE (Hyris, London, UK) molecular diagnostic system as a tool for virus detection.MethodsAedes aegypti Rps17 was used to validate and determine correlation coefficient for the novel bCUBE qPCR system to a laboratory standard StepOnePlus real-time PCR system (Applied Biosystems, Waltham, MA, USA). Experimentally infected Ae. aegypti were quantified for Zika (ZIKV) and dengue virus serotype 2 (DENV2) viral genomic RNA. Infection prevalence was compared to plaque assay.ResultsWe developed and validated a novel qPCR system for the detection of ZIKV and DENV2 using the real-time qPCR system bCUBE. With bCUBE-based qRT-PCR, viral genomic RNA could be detected in individually infected Ae. aegypti mosquitoes and in pools of 5, 10 or 15 mosquitoes.ConclusionsThe portable qPCR bCUBE diagnostic system is capable of detecting Zika and dengue virus in mosquitoes and therefore has potential as a practical field-deployable diagnostic test for vector-borne disease surveillance programmes.

Highlights

  • Surveillance of mosquito infection status is critical for planning and deployment of proper mosquito control initiatives

  • Other members of the genus Flavivirus are recognized as vector-borne pathogens of public health significance, including West Nile virus (WNV), yellow fever virus (YFV), Japanese encephalitis virus (JEV) and chikungunya virus (CHIKV)

  • We have explored the use of bCUBE technology for detection of both dengue and Zika virus in Aedes aegypti, optimizing and standardizing the sample preparation method to be used with a commercially available one-step quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) assay kit

Read more

Summary

Introduction

Surveillance of mosquito infection status is critical for planning and deployment of proper mosquito control initiatives. Other members of the genus Flavivirus are recognized as vector-borne pathogens of public health significance, including West Nile virus (WNV), yellow fever virus (YFV), Japanese encephalitis virus (JEV) and chikungunya virus (CHIKV). These viruses cause similar flu-like symptoms with the potential to progress to neuroinvasive outcomes. Aedes mosquitoes, with their aggressive blood-feeding behavior, have allowed for efficient human-mosquito transmission of Rutkowski et al Parasites Vectors (2020) 13:489 these arboviruses [3, 11]. Surveillance of geographical distribution of the vector mosquitoes and the pathogens they carry is an essential component of disease prevention and control

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call