Abstract

We investigate the effects of directional pinning due to the layered structure and to columnar defects on the microwave response in YBa2Cu3O7−δ films. We present measurements of the field-induced microwave resistivity at 48 GHz and 21 GHz taken in various relative orientations between the microwave currents, dc magnetic field and (a, b) planes. From measurements taken in the Lorentz-force-free configuration we experimentally show the relevance of the magnetic field induced increase of quasiparticle (qp) density. We identify the vortex motion contribution, and extract the vortex parameters. We estimate a pinning frequency of order 30 GHz when the field is aligned to the (a, b) plane. Secondly, we show that the introduction of columnar defects gives rise to a strong pinning along the columns, detectable even at 48 GHz. The pinning frequency appears to be of the same magnitude than for pinning by the layered structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.