Abstract

The field dependence of the magnetic entropy change peak at the low temperature surface spin freezing transition in chemically synthesized, monodispersed Co, Co–Ag, and Ni–Ag core-shell nanoparticles is studied, with the aim of gaining insight into the critical exponents of this transition. It is evidenced that although the magnitude of the peak entropy change and position of the peak can be tuned by changing the composition and nature (metallic or organic) of the shell and surfactant layers, the characteristics of the spin freezing transition are not altered. The field dependence of the refrigerant capacity also confirms this finding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.