Abstract
Soil contamination by heavy metals and metalloids has been a major environmental challenge. While various remediation technologies have been reported, field data on the remediation effectiveness have been limited. We tested a new remediation technology for on-site immobilization of As(III) and Pb(II) in a contaminated soil at an abandoned chemical plant site. A novel ternary amending agent consisting of Fe2O3, MnO2, and Mg(OH)2 (molar ratio = 1.0:5.5:5.5) was used to amend the soil on-site. Field monitoring data indicated that the amendment severed as a pH buffer and a long-term sequester for both As and Pb in the soil. At a dosage of 3 wt%, the acid-leachable As and Pb were lowered from 0.042–0.077 mg/L and 0.013–0.022 mg/L to 0.0062–0.0093 mg/L and 0.0030–0.0080 mg/L, respectively, after one day of the amendment, and to 0.0020–0.0050 mg/L and 0.0020–0.0054 mg/L after 240 days of aging. As(III) was oxidized to As(V) and subsequently immobilized via complexation and precipitation, whereas Pb(II) was sequestered via electrostatic attraction and chemical precipitation. The treatment cost was estimated at $31.5/m3. The results indicate that complex contaminants in soil can be effectively immobilized using combined amending agents that can interact with the target chemicals and induce synergistic immobilization reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.