Abstract

Abstract The objective of this paper is to investigate the water and gas injectivity in water alternating gas (WAG) projects using laboratory and field scale data. It has been reported in the literature that both gas and water mobility has been significantly reduced in three-phase flow compared to two-phase flow. This behaviour has been attributed to a cycle dependent hysteresis effect which reduced both gas and water mobility in the different injection cycles. To address the gas and water injectivity and the cycle dependent hysteresis concept, the results of a detailed experimental program in addition to field injectivity data will be presented. The experimental program included three-phase experiments performed under reservoir conditions using live crude oil and carbonate reservoir core material. The core wettability was restored by ageing the core in crude oil for several weeks under reservoir conditions and CO2 was used as miscible injectant. The field injectivity data is obtained from two CO2 WAG pilots in a carbonate reservoir. The main conclusions of the study are: 1- Gas injectivity in the presence of mobile water is much lower than that in the absence of water, 2- Water injectivity in experiments starting with water cycle is better than that in experiments starting with gas cycle when compared at the same water saturation, 3- Cyclic hysteresis in gas relative permeability was observed when comparing the first and second gas cycle, however, no further hysteresis was observed in the subsequent gas injection cycles, 4- Cyclic hysteresis in water relative permeability was not observed, the injectivity was either the same or higher in the subsequent cycles. 5- The gas injectivity at similar gas saturation for experiments starting with gas is better than that for experiments starting with water, 6- Gas and water injectivity field data from ongoing CO2 WAG projects in carbonate reservoirs showed no cyclic hysteresis, the injectivity either the same or improved in the subsequent cycles, 7- The CO2 injectivity was lower than expected, in the same order as water injectivity, which could be due to injecting CO2 in high water saturation zone and 8) The low CO2 injectivity could have a positive impact on sweep efficiency and potential improvement of oil recovery. This paper presents the results of a well-designed experimental program and field data from two CO2 WAG pilots to systematically investigate water and gas injectivity in miscible WAG projects in carbonate reservoirs. The paper provides a rich and rarely available set of experimental and field data that can help improve and optimize gas and WAG injection projects in carbonate reservoirs. Detailed analysis of the field gas and water injectivity data will be presented and discussed in-light of the laboratory experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call