Abstract

This paper describes the design, construction and use of a field-cycled proton-electron double-resonance imaging (FC-PEDRI) system for the detection and imaging of free radicals. The unique feature of this imager is its use of a 450-mT detection magnetic field in order to achieve good image quality and sensitivity. The detection magnetic field is provided by a superconducting magnet, giving high stability and homogeneity. Field cycling is implemented by switching on and off the current in an internal, coaxial, resistive secondary magnet that partially cancels the superconducting magnet's field at the sample; the secondary magnet is actively shielded to avoid eddy currents. EPR irradiation takes place at approximately 5 mT, following which the field is switched to 450 mT in 40 ms for NMR signal detection. Full details of the imager's subsystems are given, and experiments to image the distribution of stable free radical contrast agents in phantoms and in anesthetized rats are described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.