Abstract

Field studies were conducted to determine if laboratory protocols accurately predict shrimp mortality under field conditions. To evaluate the applicability of laboratory data, fenthion, a mosquitocide, was applied to coastal black rush (Juncus roemerianus) marshes in several truck-mounted ultra-low volume (ULV) adulticide operations and by direct application at the larvicide rate. Caged pink shrimp (Penaeus duorarum) were deployed in floating compartmented cages and observed frequently over a 24-h period for mortality. Water samples collected for gas chromatographic quantitation characterized the exposure concentration regime and fate of fenthion at the field sites. Field data were compared to laboratory acute toxicity data from ASTM standard practice flow-through tests. The acute flow-through 96-h LC50 of 0.11 μg/L was used as a conservative estimate of the expected toxicity in field exposures. An exposure profile based on measured field concentrations was used for laboratory pulse-exposure tests; fenthion was metered for 2 h to specified maximum concentrations, then flushed with seawater to cause a 6- to 8-h exposure, yielding a no-observed-effect concentration (NOEC) of 0.84 μg/L. In field tests, four ULV operations produced initial water concentrations < NOEC and no fenthion-induced shrimp mortality. However, the direct application's initial water concentrations ranged from 15 to 20 μg/L (> NOEC) and caused extensive mortality (90 to 100%) in the caged shrimp. Thus, field observations confirmed our hypothesis that if fenthion time-exposure concentrations were lower than the laboratory NOEC, then no mortality would occur in caged shrimp. Moreover, if initial concentrations in the field exceeded the laboratory NOEC, mortality would occur. These laboratory tests and field applications indicate that laboratory toxicity tests can predict the range of lethal and nonlethal acute field exposures to fenthion for pink shrimp when exposure regimes are similar.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.