Abstract

Characterization of three‐dimensional (3D) airflow remains elusive within a variety of environments and is particularly challenging over complex dune topography. Previous work examining airflow over and in the lee of dunes has been restricted to two‐dimensional studies and has concentrated on dune shapes containing angle of repose lee sides only. However, the presence of vegetation in coastal dunes creates topographic differences and irregular shapes that interfere with flow separation at the crest and significantly modify lee‐side airflow patterns and potential transport. This paper presents the first 3D field characterization of airflow patterns at the lee side of a subaerial dune. Flow information was obtained using an array of 3D ultrasonic anemometers deployed over a beach surface during seven offshore wind events. Data were used to measure cross‐shore and alongshore lee‐side airflow patterns using the three dimensions of the wind vector. Distances to re‐attachment were similar to previous studies, but the range of transverse incident wind directions resulting in flow separation (0+/−35°) was almost twice that previously reported (0+/−20°). Airflow reversal took place with winds as slow as 1 m s−1. Transverse offshore winds generated areas of opposing wind directions both within the reversed zone and beyond re‐attachment, contrary to consistent deflection in only one direction found in transverse desert dunes. Patterns of flow convergence‐divergence have been reported in fluvial studies. However, while convergence was associated with weak reversal in fluvial settings, it appeared to be related to strong flow reversal here and could be produced by pressure differentials at the dune crest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.