Abstract

The primary goal of this PhD research was to obtain critical information needed to further calibrate the novel glass-based retrospective radon detectors (RRDs) by characterizing the quantitative relationship between radon gas concentrations, the surface-deposited activities of various radon progeny, the airborne dose rate, and various residential environmental factors through both actual field measurements and MonteCarlo simulation. Radon and radon progeny concentrations were measured, from May 2005 to May 2007, in 38 Iowa houses occupied by either smokers or nonsmokers. The investigation took into account several important indoor environmental factors, which have crucial influences on the radon progeny deposition process in homes. The long-term (3 months) surface-deposited radon progeny by species and implanted Po were measured using a RRD. During the 3 months, the short-term (3-7 days) airborne radon progeny by species and bimodal size fraction were measured using a recently developed active detector. Both passive and active detectors are solid state nuclear track detectors. Airborne dose rates were calculated from unattached and attached potential alpha energy concentrations (PAECs) based on both Porstendorfer’s effective dose conversion factor and that of James. Correlation analysis and multiple linear regression analysis were applied to analyze both field study results and Monte-Carlo simulation study results. Temporal and spatial variations among airborne dose rates and surface-deposited radon progeny were also investigated in actual field settings. Overall, deposited radon progeny were useful in predicting airborne dose rate in addition to the radon gas concentration. The occurrence of smoking was the most crucial environmental factor influencing the deposition process. In addition, other environmental factors were identified that served as useful covariates predicting airborne dose rates by smoking status.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.