Abstract

A very concise field-calibrated electro-optic probe using interference of modulated beams is presented. A model for interferometric electro-optic sensing with a sensor probe is proposed, utilizing the interference fringing slopes and field-induced electro-optic phase retardations. The sensing dynamic range is experimentally explored by investigating the modulation slopes and retardations with respect to the probe beam's polarizations. The probe shows a dynamic range ≥45 dB over the microstrip lines. This sensitivity is acceptable for realizing electric field imaging of radiative electronic devices. The absolute sensitivity of the probe is also determined with a micro-TEM cell that generates accurate electric fields with calculable strength for probe calibrations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.