Abstract

Managers are increasingly aware of the need for science to inform the stewardship of natural lands and resources. If ecologists are to address this need, we must increase the scope of our inferences, while maintaining sufficient resolution and realism to predict trajectories of specific populations or ecosystem variables. Food chain and simple food web models, used either as core or component hypotheses, can help us to meet this challenge. The simple mass balance logic of dynamic food chain or food web models can organize our thinking about a range of applied problems, such as evaluating controls over populations of concern, or of biotic assemblages that affect important ecosystem properties. In other applications, a food chain or web may be incorporated as one element in models of regional mass balances affecting resources or environments. Specific predictions of food web models will often fail because of inadequate resolution (e.g., of functionally significant differences among taxa within “trophic levels”) or insufficient scope (e.g., of spatio‐temporal variation over scales relevant to management). Increasing use of tracers to delimit spatial scales of food web interactions will reduce, but not eliminate, this limitation. If used with skepticism and vigilance to local natural history, however, food chain or simple food web models can promote the iterative feedback between prediction, falsification by observation, and new prediction central to hypothetico‐deductive science and adaptive management. Experience argues that this stepwise path is the fastest towards better understanding and control of our impacts on nature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call