Abstract

A one-year field monitoring of a geogrid reinforced municipal solid waste (MSW) slope was conducted in the Xingfeng Landfill. Settlement tubes, strain gauges and earth pressure cells were used to measure the vertical settlement, the reinforcement strains and the vertical earth pressures in the reinforced MSW slope, respectively. During the monitoring period, the waste sliding occurred and the fresh MSW was dumped at the top of the reinforced slope. The vertical settlement along the reinforcement was nonlinear and the peak settlement occurred at the central part of the reinforcement. The reinforcement strains and the vertical earth pressures at various positions were affected by the sliding and the waste dumping to differing extents. Along the lengths of the geogrid reinforcements, the reinforcement strains showed single-peak distributions. The peak strains were attained in the central part of the reinforcements and the minimum strains were attained at the tail ends. The vertical earth pressures mainly depend on the overlying loads; however, the distributions of them along the reinforcement were nonlinear. Based on the monitoring results, the slope stability evaluation was conducted. It shows that the internal stability of the reinforced MSW slope might be sufficient, while the external stability was insufficient, meaning that this reinforced project was unsuccessful. Finally, various lessons and design suggestions learned from this unsuccessful project were discussed, which could provide valuable references for the future practice of geosynthetic reinforced MSW.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call