Abstract

Many functional films including heat spreaders, ultrahigh density information storage systems, capacitors, batteries, and fuel cell membranes require enhanced through thickness properties. In this paper, we describe a design and demonstration of a multipurpose novel film formation process to orient and align functional nanoparticles and polymer phases using external electric, magnetic, and thermal gradient fields. This roll‐to‐roll processing line uses a casting system that deposits liquid film of a monomer and/or polymer solution on to a flexible substrate. Substrate is carried by belt through an electric field zone that can apply DC, AC, or a biased AC to orient the phases and particles in the vertical direction while subjecting it to UV through its built in transparent conductive carrier. To orient magnetic particles, an electromagnet located along the machine may be used. The final tool that is built on this machine is the thermal alignment zone which is designed to apply a “line of heat” oriented transverse to the machine direction at nine different zones. Using this processing line, we are able to reduce the cost of manufacturing by limiting the amount of functional fillers through directional alignment while enhancing the thickness properties. POLYM. ENG. SCI., 55:34–46, 2015. © 2014 Society of Plastics Engineers

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.