Abstract

Palladized iron (Pd/Fe) has been tested under field conditions for the dechlorination of trichloroethene (TCE) in groundwater. Contaminated water was pumped from aquifers in Ohio (∼0.7– 1.5 mg/l TCE) and Missouri (2–9 mg/l TCE and 1,2-dichloroethene) and passed through columns of Pd/Fe. The experiments demonstrated that the dechlorination reaction occurs efficiently until the surface of the Pd/Fe becomes fouled. Regeneration of the surface with dilute (1M) hydrochloric acid is easily accomplished under laboratory conditions, but initially was unsuccessful in the field. Further experiments indicated, that reduced sulfur species, although not naturally present in the groundwater being treated, were permanently poisoning the palladium. Apparently, sulfur-reducing bacteria utilize the hydrogen produced by the Pd/Fe process and reduce the sulfate that is present. An anion exchange column was used to remove sulfate (∼20 mg/l) from groundwater at the Kansas City Plant in order to test this theory. Under these conditions, a column of Pd/Fe was repetitively regenerated for a 4-week period. A second column, not protected by sulfate removal, could not be regenerated. The results demonstrated that Pd/Fe could be used in a long-term field process if a material with more resistance to Fe and Pd losses is developed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.