Abstract
New requirements are put forward for agricultural drainage system due to frequent floods and cultivated land shortage in Huaibei plain, China. The improved subsurface drainage is a more efficient drainage system by laying high permeability materials as filter above the drains based on conventional subsurface drainage whose function is limited by soil hydraulic conductivity. Field experiments was used to evaluate the performance of the improved subsurface drainage preliminarily and numerical experiments was used to explore the capacity of the improved subsurface drainage deeply. Based on calibration and validation by field experiment data, HYDRUS model was used to evaluate the impacts of design parameters of filter hydraulic conductivity, filter width and height, drain spacing and depth on improved subsurface drainage discharge with constant ponding depth. Then, water table depths at different distances from the pipe drain for improved and conventional subsurface drainage were simulated under initial conditions of saturated soil and no surface ponding. Besides, the daily water balance under improved subsurface drainage had been also studied. The result of field experiment showed that the discharge of improved subsurface drainage was about 1.9 times of the conventional subsurface drainage discharge under conditions of same surface ponding depths. The results of numerical experiments indicated that the improved subsurface drainage had a real-time drainage function for the reason that cumulative outflow increased by about 87% than conventional subsurface drainage within 12h after beginning draining. The improved subsurface drainage lowered water table to an appropriate depth faster than conventional ones, which could provide a more favourable soil moisture condition for crop growth. Furthermore, through daily water balance analysis of improved and conventional subsurface drainage with different rainfalls and initial water table depths, the results showed that subsurface drainage could reduce surface runoff effectively, especially for improved subsurface drainage. Good drainability of the improved subsurface drainage was beneficial to decrease the amount of soil water storage after rainfall and helpful to shorten subsequent draining time of water table drawdown. The research results could provide scientific basis for improved subsurface drainage design and lay a good foundation for its application. Meanwhile, it would be beneficial to enrich agricultural drainage technologies and promote development of agricultural drainage in China.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.