Abstract

The diffusive gradients in thin films (DGT) technique has shown to be a useful tool for predicting metal bioavailability and toxicity in sediments, however, links between DGT measurements and biological responses have often relied on laboratory-based exposures and further field evaluations are required. In this study, DGT probes were deployed in metal-contaminated (Cd, Pb, Zn) sediments to evaluate relationships between bioaccumulation by the freshwater bivalve Hyridella australis and DGT-metal fluxes under both laboratory and field conditions. The DGT-metal flux measured across the sediment/water interface (±1 cm) was useful for predicting significant cadmium and zinc bioaccumulation, irrespective of the type of sediment and exposure. A greater DGT-Zn flux measured in the field was consistent with significantly higher zinc bioaccumulation, highlighting the importance of performing metal bioavailability assessments in situ. In addition, DGT fluxes were useful for predicting the potential risk of sub-lethal toxicity (i.e., lipid peroxidation and lysosomal membrane damage). Due to its ability to account for multiple metal exposures, DGT better predicted bioaccumulation and toxicity than particulate metal concentrations in sediments. These results provide further evidence supporting the applicability of the DGT technique as a monitoring tool for sediment quality assessment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.