Abstract

The interdigital transducer (IDT) is a key component in surface-acoustic wave (SAW) and acousto-optical devices and has extensive applications in signal processing and optical communication at present. Properties of the acoustic field are mainly dominated by the geometric shapes of the electrodes (i.e. fingers) of the IDT and the piezoelectric characteristics of the substrate. However, the studies on excitation and acoustic wave field characteristics of IDTs are still not matured or perfect. In this paper, the 2D interface Green's function method (GFM) for simulating numerically the SAW field of IDTs with arbitrary finger shapes is presented. The electric charge densities originated from the electrostatic field and the generated SAW on the IDT electrodes are calculated first using the 2D interface GFM. Then the charge density distribution as the distributed source of SAW used to calculate the SAW field. IDT with arbitrary finger shapes can be treated. As an example, the properties of a SAW field generated by focused IDTs with the shape of concentric circular arc fingers on Y–Z LiNbO3 and c-oriented PZT substrates are also analysed and discussed. The method can be applied to numerical analysis of IDTs with arbitrary finger shapes, such as broadband chirp transducers, curved-finger transducers and finger-length weighted transducers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.