Abstract

Oligomeric forms of the amyloid beta (Aβ) protein have been indicated to be an important factor in the development of Alzheimer's disease (AD). Since the oligomeric forms of Aβ can vary in size and conformation, it is vital to understand the early stages of Aβ aggregation in order to improve the care and treatment of patients with AD. This is the first study to determine the effect of field amplified sample stacking (FASS) on the separation of oligomeric forms of Aβ1-42 using capillary electrophoresis (CE) with ultraviolet (UV) detection. UV-CE was able to separate two different species of Aβ1-42 oligomers (<7 mers and 7-22 mers). Although FASS required the use of a higher ionic strength buffer, Aβ1-42 oligomers had the same aggregation behavior as under the non-FASS conditions with only small changes in the amounts of oligomers observed. In general, FASS provided smaller peak widths (>75% average reduction) and increased peak heights (>60% average increase) when compared to non-FASS conditions. UV-CE with FASS also provided higher resolution between the Aβ1-42 oligomers for all aggregation time points studied. In addition, Congo red and Orange G inhibition studies were used to help evaluate the conformation of the observed species. This work demonstrates the ability of UV-CE employing FASS to provide higher resolution between oligomeric forms of Aβ1-42 without significantly altering their aggregation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call