Abstract

Routine SuperDARN observations of the ionospheric plasma convection and field‐aligned currents (FACs) in the high‐latitude ionosphere are used to study current systems established at small interplanetary magnetic field (IMF) Bz and By. By statistical averaging of available data sets we show that under this IMF condition the ionospheric convection pattern consists of two (evening and morning) convection cells that are similar in shape. The flow intensity inside the central polar cap is noticeably depressed so that plasma entering the polar cap flows around its border, predominantly along the lines of equal magnetic latitude, so that the convection cells are of a crescent‐like shape. This global pattern of plasma flow is associated with the effect of the region 0 field‐aligned currents coexisting with the region 1 and region 2 field‐aligned currents. SuperDARN observations of FACs for individual events support this conclusion. FACs were derived by analyzing the vorticity of the SuperDARN convection maps. We show that region 0 currents for small IMF Bz and By can exist in time sectors way off the magnetic noon. Thus radar observations support earlier findings from satellite magnetometer measurements of the region 0 current system at high latitudes during both the prenoon and afternoon at small IMF intensities. Because the region 0 FACs occur during small IMF intensities, it is suggested that quasi‐viscous processes play a role in their generation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.