Abstract

A microscope-coherent optical processor is used for the measurement of the registration errors on integrated-circuit wafers. The measurements are obtained from the optical correlation of wafers with reference wafer patterns by use of matched spatial filters. Previously, the intricate pattern of the active circuit area of wafers has been used in the correlation process, and a new matched spatial filter had to be created for each different integrated circuit. Here, the results of using comparatively plain fiducial markers on a wafer for the registration-error measurement are presented, and these show that the measurements can be made independent of the design of the integrated circuit while maintaining the advantages and accuracy of the optical correlation technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.