Abstract

Emerging Internet of Things (IoT) applications, such as cashier-less shopping, mobile ads targeting, and geo-based augmented reality (AR), are expected to bring us much more convenience and infotainment. To realize this amazing future, we need to feed these applications with user locations of (sub)meter-level resolution anytime and anywhere. Unfortunately, many widely used location sources are either unavailable indoor (e.g., global positioning system) or coarse grained (e.g., user check-ins). In order to provide ubiquitous localization services, the widespread WiFi signals are being leveraged to establish (sub)meter-level localization systems. Fine-grained WiFi propagation characteristics, which are sensitive to human body locations, have been employed to create location fingerprints. However, these WiFi characteristics are also sensitive to: 1) the body shapes of different users and 2) the objects in the background environment. Consequently, systems based on WiFi fingerprints are vulnerable in the presence of: 1) new users with different body shapes and 2) daily changes of the environment, e.g., opening/closing doors. To tackle this issue, this article proposes a WiFi-based localization system based on domain-adaptation with cluster assumption, named Fidora. Fidora is able to: 1) localize different users with labeled data from only one or two example users and 2) localize the same user in a changed environment without labeling any new data. To achieve these, Fidora integrates two major modules. It first adopts a data augmenter that introduces data diversity using a variational autoencoder (VAE). It then trains a domain-adaptive classifier that adjusts itself to newly collected unlabeled data using a joint classification-reconstruction structure. We conducted real-world experiments to evaluate Fidora against the state of the art. It is demonstrated that when tested on an unlabeled user, Fidora increases the average <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$F1$ </tex-math></inline-formula> score by 17.8% and improves the worst case accuracy by 20.2%. Moreover, when applied in a varied environment, Fidora outperforms the state of the art by 23.1%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.