Abstract

Fidelity for two-particle wave packets of spin- \(\frac{1}{2}\) particles moving around the Schwarzschild spacetime is discussed. Both acceleration and gravity cause to produce a Wigner rotation that transforms the wave packet as it moves along a specified path in the gravitational field. For considered circular paths, the fidelity between the spin parts of initial and final states of the system, called the spin fidelity, is obtained as a function of angular velocity, elapsed proper time and radius of circular paths. For fixed elapsed proper time and angular momentum of the centroid, there always exists one circular orbit with determined radius on which the fidelity of spin parts is minimum. Using a numerical approach, the behavior of the spin fidelity in terms of the angular velocity, as well as the radius of paths is described for both the spin singlet and spin triplet states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.