Abstract

Long-term space missions will expose crew members, their cells as well as their microbiomes to prolonged periods of microgravity and ionizing radiation, environmental stressors for which almost no earth-based organisms have evolved to survive. Despite the importance of maintaining genomic integrity, the impact of these stresses on DNA polymerase-mediated replication and repair has not been fully explored. DNA polymerase fidelity and replication rates were assayed under conditions of microgravity generated by parabolic flight and compared to earth-like gravity. Upon commencement of a parabolic arc, primed synthetic single-stranded DNA was used as a template for one of two enzymes (Klenow fragment exonuclease+/−; with and without proofreading exonuclease activity, respectively) and were quenched immediately following the 20 s microgravitational period. DNA polymerase error rates were determined with an algorithm developed to identify experimental mutations. In microgravity Klenow exonuclease+ showed a median 1.1-fold per-base decrease in polymerization fidelity for base substitutions when compared to earth-like gravity (p = 0.02), but in the absence of proofreading activity, a 2.4-fold decrease was observed (p = 1.98 × 10−11). Similarly, 1.1-fold and 1.5-fold increases in deletion frequencies in the presence or absence of exonuclease activity (p = 1.51 × 10−7 and p = 8.74 × 10−13), respectively, were observed in microgravity compared to controls. The development of this flexible semi-autonomous payload system coupled with genetic and bioinformatic approaches serves as a proof-of-concept for future space health research.

Highlights

  • Future long-term space missions may be associated with substantial genomic risks given the prolonged exposure to a lack of substantial gravity and ionizing radiation

  • We present a novel paradigm for conducting DNA repair and replication experiments in microgravity in order to investigate a central element of the pathway, using a model DNA polymerase, These experiment are timely as astronauts are currently preparing to undertake prolonged exploratory missions where robust polymerase repair activities are essential for survival

  • Samples collected in microgravity were denoted as μG+ or μG− depending on whether Klenow or Klenow were used, whilst earth-like gravity controls were denoted as 1 G+ or 1 G− in a similar fashion

Read more

Summary

Introduction

Future long-term space missions may be associated with substantial genomic risks given the prolonged exposure to a lack of substantial gravity (microgravity) and ionizing radiation. While evidence for the ability of ionizing radiation to mutagenize DNA has been investigated, the effects of microgravity on DNA replication and repair of radiation-induced lesions has been less studied. In order to predict the viability of future long-term spaceflight, it is important to understand if microgravity can impact DNA processes and how these dynamics can affect genomic integrity. Cultured rat liver cells on board the International Space Station showed evidence of doublestranded breaks (DSBs) along dense particle tracks consistent with damage due to ionizing radiation damage (Ohnishi et al, 2009). Resultant DNA damage includes DSBs, single-stranded breaks (SSBs), crosslinking, depolymerization, base release and base modifications (Pouget et al, 2002; Dextraze et al, 2010; Kennedy, 2014; Santivasi & Xia, 2014)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call