Abstract

Fidelity is known to increase through any Kraus map: the fidelity between two density matrices is less than the fidelity between their images via a Kraus map. We prove here that, in average, fidelity is also increasing for any discrete-time quantum filter: fidelity between the density matrix of the underlying Markov chain and the density matrix of its associated quantum filter is a sub-martingale. This result is not restricted to pure states. It also holds true for mixed states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call