Abstract

We investigate fidelity for the quantum evolution of a Bose-Einstein condensate (BEC) and reveal its general property with a simple two-component BEC model. We find that, when the initial state is a coherent state, the fidelity decays with time in the ways of exponential, Gaussian, and power law, depending on the initial location, the perturbation strength, as well as the underlying mean-field classical dynamics. In this case we find a clear correspondence between the fast quantum fidelity decay and the dynamical instability of the mean-field system. With the initial state prepared as a maximally entangled state, we find that the behavior of fidelity has no classical correspondence and observe an interesting behavior of the fidelity: periodic revival, where the period is inversely proportional to the number of bosons and the perturbation strength. An experimental observation of the fidelity decay is suggested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call