Abstract

Fidelity for the spin part of states of two spin- \(\frac{1}{2}\) particles is investigated from the viewpoint of moving observers. Using a numerical approach, the behavior of the fidelity in terms of the boost parameter is described for different amounts of spin entanglement and momentum entanglement. It is shown that for the spin entangled states the fidelity decreases less than that of the case of spin product states and there are special cases for which the fidelity remains perfect regardless of moving observers’ velocity. Generally, in the limit of boosts with speeds close to the speed of light, the fidelity saturates, i.e., it reaches to a constant value that depends on the amount of momentum entanglement and the width of the momentum distribution function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.