Abstract
We study the stability of unitary quantum dynamics of composite systems (for example: central system + environment) with respect to weak interaction between the two parts. Unified theoretical formalism is applied to study different physical situations: (i) coherence of a forward evolution as measured by purity of the reduced density matrix, (ii) stability of time evolution with respect to small coupling between subsystems, and (iii) Loschmidt echo measuring dynamical irreversibility. Stability has been measured either by fidelity of pure states of a composite system, or by the so-called reduced fidelity of reduced density matrices within a subsystem. Rigorous inequality among fidelity, reduced-fidelity and purity is proved and a linear response theory is developed expressing these three quantities in terms of time correlation functions of the generator of interaction. The qualitatively different cases of regular (integrable) or mixing (chaotic in the classical limit) dynamics in each of the subsystems are discussed in detail. Theoretical results are demonstrated and confirmed in a numerical example of two coupled kicked tops.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.