Abstract

Paraconsistent extensions of 3-valued Gödel logic are studied as tools for knowledge representation and nonmonotonic reasoning. Particularly, Osorio and his collaborators showed that some of these logics can be used to express interesting nonmonotonic semantics. CG’3 is one of these 3-valued logics. In this paper, we introduce Fidel semantics for a certain calculus of CG’3 by means of Fidel structures, named CG’3-structures. These structures are constructed from enriched Boolean algebras with a special family of sets. Moreover, we also show that the most basic CG’3-structures coincide with da Costa–Alves’ bi-valuation semantics; this connection is displayed through a Representation Theorem for CG’3-structures. By contrast, we show that for other paraconsistent logics that allow us to present semantics through Fidel structures, this connection is not held. Finally, Fidel semantics for the first-order version of the logic of CG’3 are presented by means of adapting algebraic tools.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.