Abstract

Spontaneous rhythmically bursting activity was recorded from the trigeminal, vagal and hypoglossal nerve roots of the isolated brainstem from the frogs Rana catesbeiana and Rana pipiens superfused with a bicarbonate-free HEPES-buffer solution. Burst frequency, burst duration and the activity profile of the spontaneous neural discharges in vitro resembled those of a less radical preparation, the decerebrate, fictively breathing frog. After complete midsagittal section, each half of the isolated brainstem generated its own rhythmic neural activity which resembled that of the intact isolated brainstem. The spontaneous activity generated within each half of the brainstem is probably coordinated by decussating axons or by groups of neurons located along the midline of the brainstem Our results suggest that these coordinating entities extend the length of the brainstem (in a rostro-caudal dimension) and the degree of contact rather than the location of the contact between the two halves of the brainstem determines the synchronization of the right and left halves. Burst frequency of both the intact and hemisected brainstem preparation was decreased by alkaline challenge and increased by acid challenge. We conclude that this endogenous rhythmic activity represents the efferent motor output underlying lung ventilation in these animals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.