Abstract

To define the release of nitric oxide (NO), prostaglandin E2 (PGE2), and the neutral metalloproteinases (NMPs) in horses with subchondral cystic lesions (SCL) and to study bone resorption triggered by conditioned media of fibrous tissue of SCL in vitro. Equine explant cultures of fibrous tissue of SCL, and synovial membrane and articular cartilage of normal horses and horses affected with moderate and severe osteoarthritis were performed. NO, PGE2, and NMP concentrations of media samples were measured, and osteoclast formation and activation was studied in vitro. Experiment 1: 32 horses with SCL (n = 8), normal joints (7), and joints with moderate (7) and severe (10) osteoarthritis (OA). Experiment 2: 22 horses with SCL (n = 3), normal joints (7), and chip fractures (12). Experiment 3: Conditioned media of fibrous tissue from 3 horses with SCL of the medial femoral condyle (n = 1), distal metacarpal bone (1), and tarsal bone (1). Determinations of local mediator concentrations were made with the Griess assay for NO and an enzyme immunoassay kit for PGE2 concentrations in biological fluids. Enzyme activities were assessed with radiolabeled substrates indicating collagenolytic, gelatinolytic, and caseinolytic activities. The resorption pit assay was used to assess osteoclast recruitment and activity. Fibrous tissue of SCL produced NO, PGE2, and NMPs. Of all the variables measured, PGE2 concentrations were the highest in cystic tissue of SCL compared with synovial membrane and articular cartilage from normal joints and joints with chip fractures, indicating that this mediator may play an important role in pathological bone resorption associated with SCL. These findings were supported by the observation that conditioned media of SCL tissue were capable of recruiting osteoclasts and increasing their activity. Fibrous tissue of SCL released NO, PGE2, and NMPs into the culture media. It is suspected that intralesional fibrous tissue may play an active role in the pathological process of bone resorption occurring in SCL in horses and may be partly responsible for the maintenance, slow healing rate, and expansion of these lesions. Understanding the pathogenesis of SCL will help to establish successful therapy in horses affected with SCL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.