Abstract

The fabrication of novel fibre composite electrode structures and the performance assessments for oxygen reduction in alkaline electrolyte is reported. An array of 2μm diameter activated carbon fibres interlocked within a network of 2μm sinter-bonded metal fibres to form the composite structure was used. The resulting electrode structure is stable, highly conductive and can maintain void fraction exceeding 95%. Electrode physical properties including thickness, macroporosity, volume and mass fractions of constituent carbon and metal fibres have been controlled, characterized, and related to the electrode polarization in a KOH half cell. Comparisons have been made with a commercial Teflon-bonded gas diffusion electrode (GDE). It has been demonstrated that this novel method allows reproducible and low-cost fabrication of GDEs with the optimal balance between macropores for gas access, micropores for liquid access, and conductive paths for electron access.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.