Abstract

Fibrous dysplasia (FD) is a non-malignant fibro-osseous bony lesion in which the involved bone/bones gradually get converted into expanding cystic and fibrous tissue. The underlying defect in FD is post-natal mutation of GNAS1 gene, which leads to the proliferation and activation of undifferentiated mesenchymal cells arresting the bone development in woven phase and ultimately converting them into fibro-osseous cystic tissue. Cherubism is a hereditary form of fibrous dysplasia in which the causative factor is transmission of autosomal dominant SH3BP2 gene mutation. The disease may present in two distinct forms, a less severe and limited monostotic form, and a more aggressive and more widespread polyostotic form. Polyostotic form may be associated with various endocrine abnormalities, which require active management apart from the management of FD. Management of FD is not free from controversies. While total surgical excision of the involved area and reconstruction using newer micro-vascular technique is the only definitive treatment available from the curative point of view, but this can be only offered to monostotic and very few polyostotic lesions. In polyostotic varieties on many occasions these radical surgeries are very deforming in these slow growing lesions and so their indication is highly debated. The treatment of cranio-facial fibrous dysplasia should be highly individualized, depending on the fact that the clinical behavior of lesion is variable at various ages and in individual patients. A more conservative approach in the form of aesthetic recontouring of deformed bone, orthodontic occlusal correction, and watchful expectancy may be the more accepted form of treatment in young patients. Newer generation real-time imaging guidance during recontouring surgery adds to accuracy and safety of these procedures. Regular clinical and radiological follow up is required to watch for quiescence, regression or reactivation of the disease process. Patients must be warned and watched for any sign of nerve compression, especially visual impairment due to optic nerve compression. Rather than going for prophylactic optic canal decompression (which does more harm than good), optic nerve decompression should be done in symptomatic patients only, and preferably be done via minimal invasive endoscopic neuro-surgical approach than the conventional more morbid open craniotomy approach. There is growing research and possibilities that newer generation bisphosphonate medication may change the management scenario, as these medications show encouraging response in not only reducing the osteoclastic activity, but simultaneously also stimulating the osteoblastic and osteocytic activities. The explosion of genetic research and stem cell therapy may lead to better understanding and subsequently better treatment of FD in future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.